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Bounds on the mobility of electrons in weakly ionized plasmas
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We obtain exact upper and lower bounds on the steady-state drift velocity, and kinetic energy of electrons,
driven by an external field in a weakly ionized plasma~swarm approximation!. The scattering is assumed to be
elastic with a simplified velocity dependence of the collision cross sections. When the field is large the bounds
are close to each other and to the results obtained from the conventional approximation of the Boltzmann
equation in which one keeps only the first two terms of a Legendre expansion. The bounds prove rigorously
that it is possible to increase the electron mobility by the addition of suitably chosen scatterers to the system
as predicted by the Druyvesteyn approximation and found in experiments.@S1063-651X~97!07807-0#

PACS number~s!: 52.25.Fi, 05.60.1w, 52.20.Fs, 02.30.Mv
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I. INTRODUCTION

The behavior of the electron mobility in a gas compos
of several species is a subject of continued experimental
theoretical investigations@1–4#. Of particular interest is the
fact that theadditionof certain types of scatterers, i.e., ne
tral species, to the gas increases the electron mobility
therefore the electron current in an applied electric fi
@3,4#. This effect is potentially of practical utility and, as wa
pointed out by Nagpal and Garscadden@4#, can be used to
obtain information about scattering cross sections and le
structure of different species.

The fact that the mobility can actually increase with t
addition of scatterers is at first surprising: It is contrary to
well-known Matthiessen rule in metals, which states that
total resistivity due to different types of scatterers is the s
of resistivities due to each of them@5#. A closer inspection
shows that Matthiessen’s rule refers to the linear regime
small electric fields, while the observations and analysis
gases@3,4# are in the nonlinear high-field regime.

This still leaves open the question of the validity of a
proximations commonly made in calculating the current
weakly ionized plasmas in strong fields. We therefore inv
tigate here rigorously the stationary solutions of the kine
equation for the electron velocity distribution function
cases where the electron–neutral-atom (e-n) collisions are
purely elastic and their cross section is modeled by a sim
power dependence on the electron speed. In particular
establish two-sided bounds for the electron mean energy
drift in the presence of an external electric field. The
bounds show that the results obtained for the current
energy of the electrons in the usual approximation, wh
neglects higher-order terms in a Legendre polynomial exp
sion and gives the Druyvesteyn-like distribution for lar
fields, are qualitatively right and even provide good quan
tative answers. In fact, they are sufficiently precise to c
firm an increase in the current for large~but not for small!
fields upon addition of some gases, provided the mass o
added species is smaller than that of the dominant one,
adding helium to a xenon gas, and the different cross s
561063-651X/97/56~1!/1012~7!/$10.00
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tions satisfy certain conditions. We believe that our analy
can be extended to include more realistic elastic cross
tions and inelastic collisions; these are most important
practice for enhancement of the electron mobility.

II. KINETIC EQUATION

Our starting point is the commonly used swarm appro
mation, applicable to gases with a very small degree of i
ization @6–10#. In this approximation onlye-n collisions are
taken into account in the kinetic equation for the electr
distribution function ~EDF! f (r ,v,t). The neutral atoms
themselves, which may consist of several species, are
sumed to have a Maxwellian distribution with a specifi
common temperatureTn . Further simplification is achieved
if the e-n collisions are assumed to be essentially elastic:
collision integral can then be reduced@1,6# to a differential
operator due to the great difference in the masses of
electrons and neutrals. To simplify matters further we co
sider the case where the scattering is spherically symme
The stationary kinetic equation for the normalized EDF, in
spatially uniform system with constant densityn subject to
an external electric fieldF, can then be written in the form
@6#

2
e

m
F•“v f5

1

v2
]

]v Fe~v !
v4

l~v ! S f 01 kTn
mv

] f 0
]v D G

1
v

l~v !
~ f 02 f !,

~1!

l~v !5F(
i51

S

Nis i~v !G21

, e~v !5l~v !m(
i51

S
Nis i~v !

Mi
.

Heree,m are the electron charge and mass,s i is the colli-
sion cross section with speciesi whose mass isMi and num-
ber density isNi , l is the mean free path in thee-n colli-
sions,k is Boltzmann’s constant, andf 0 is the spherically
symmetric part of the distribution function,
1012 © 1997 The American Physical Society
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56 1013BOUNDS ON THE MOBILITY OF ELECTRONS IN . . .
f 0~v !5
1

4p E f ~v!dV.

We note thate is a small parameter equal to the ratio of t
electron mass to the mean mass of neutral scatteree
5mM̄21, whereM̄215(Mi

21Nis i /(Nis i .

A. Velocity-independent cross sections

We shall consider first the case wheres i(v) is indepen-
dent ofv sol5const ande5const. Taking the electric field
parallel to thez axis, Eq.~1! can be written in the dimen
sionless form

2E
] f

]uz
5e

1

u2
]

]u Fu4S f 01 T

u

] f 0
]u D G1u~ f 02 f !, ~2!

where

u5gv, u5Aux21uy
21uz

2,

g5A m

kT0
, T5

Tn
T0

, E5
eluFu
kT0

with some fixedT0 specifying the units of the temperatur
We normalizef so that

1

4p E f ~u!d3u5E
0

`

u2f 0du51. ~3!

WhenE50 the stationary distribution is the Maxwellia
with temperatureT,

f5 f 05M ~u!5A 2

pT3
expS 2u2

2T D ; ~4!

M (u) is the unique solution of Eq.~2! for E50, eÞ0. When
EÞ0 the situation is more complicated. Only forE small
compared toe can we expect the stationary EDF to be clo
toM (u). But in the physically interesting regimes it ise that
is small compared toE. On the other hand, ife.0 the
collisions almost do not change the electron energy, so
difficult for the electrons to get rid of the energy they acqu
from the field. The limite→0 is therefore singular. In par
ticular, there is no well-defined reference stationary state
e50 about which to expand the solution of Eq.~2!.

B. Legendre expansion

The usual method@8# of solving Eq. ~2! is to expand
f (u) in terms of the Legendre polynomialsPl ,

f ~u!5(
l50

`

f l~u!Pl~cosu!,

~5!

f l~u!5
2l11

4p E f ~u!Pl~cosu!dVu ,
is

r

where u is the angle betweenu and the fieldF: cosu
5uz /u. Substituting Eq.~5! into Eq. ~2! we obtain an infi-
nite set of coupled ordinary differential equations forl>0,
u>0. These have the form

2
E

3 S d f1du
1
2

u
f 1D5e

1

u2
d

du Fu4S f 01 T

u

d f0
du D G , l50

~6!

and

EF l

2l21 S d fl21

du
2
l21

u
f l21D1

l11

2l13 S d fl11

du

1
l12

u
f l11D G5u fl , l51,2,... . ~7!

Equation~6! can be integrated to give

f 152
3e

E
u2S f 01 T

u

d f0
du D , ~8!

where the arbitrary constant of integration was taken to b
using reasonable assumptions on the behavior off asu→0
andu→`.

In the conventional@8–10# approximation scheme only
two terms of expansion~5! are kept. This is equivalent to
assumingf l(v)[0 for l>2. One then adds to Eq.~8! one
more differential equation, obtained from Eq.~7!, for l51,

E
d f0
du

5u f1 . ~9a!

Substituting Eq.~8! into Eq. ~9! then yields an equation fo
f 0 ,

S 11
3eT

E2 u2D d f0
du

1
3e

E2 u
3f 050, ~9b!

whose solution is

f 05C expS 2E
0

u x3dx

Tx21E2/3e D . ~9c!

This f 0 becomes the MaxwellianM (u) @Eq. ~4!# when E
50 and the Druyvesteyn@11# distribution f D whenT50:

f 05 f D5C expS 2
3eu4

4E2 D ,
~10a!

C5&S 3e

E2D 3/4Y GS 34D ,
whereG is the Gamma function. Using Eqs.~9! and ~10a!
one can findf 1 ,

f 152C
3eu2

E
expS 2

3eu4

4E2 D . ~10b!

For T.0, f 0 in Eq. ~9c! will always have a Maxwellian
form for u@(E2/Te)1/2.
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1014 56A. ROKHLENKO AND JOEL L. LEBOWITZ
The first two harmonics are sufficient to find the me
energy per particleW and mean speed~drift! w of the elec-
trons, which are physically the most important properties
the stationary state,

W5
m

8p E v2f ~v !d3v5
m

2g2 E
0

`

u4f 0du,

~11!

w5
21

4pg2 E uzf d
3u5

21

3g E
0

`

u3f 1du.

We shall now study the properties of these moments with
the approximations made for explicitly solving Eq.~2!.

III. MOMENTS OF THE DISTRIBUTION FUNCTION

We assume that moments

Mk
~ l !5E

0

`

ukf l~u!du ~12!

exist at least for 0<k<9. Multiplying Eq. ~7! by a positive
powerk of u and integrating overu yields the equation

EF2 l
l1k21

2l21
Mk21

~ l21!1
~ l11!~ l122k!

2l13
Mk21

~ l11!G
5Mk11

~ l ! . ~13!

In terms of these momentsw andW can be written, using
Eqs.~11! and ~8!, as

w5
e

Eg
@M5

~0!24TM3
~0!#, W5

m

2g2M4
~0! . ~14!

We will now construct estimates ofw andW by using
Eqs.~8! and~13! to get relations between theMk

(0) . ~i! Tak-
ing l51 andk53 in Eq.~13! and substituting Eq.~8! for the
calculation ofM4

(1) gives

M2
~0!515

e

E2 ~M6
~0!25TM4

~0!!. ~15!

~ii ! For l51, k56, Eqs.~13! and ~8! yield

M5
~0!1

1

5
M5

~2!5
e

2E2 ~M9
~0!28TM7

~0!!. ~16!

~iii ! The setl52, k54 allows us to findM5
(2) ,

M5
~2!52

10

3
EM3

~1!510e~M5
~0!24TM3

~0!!

and eliminate it from Eq.~16! to obtain

~112e!M5
~0!28TeM3

~0!5
e

2E2 ~M9
~0!28TM7

~0!!.

~17!

Further calculation using differentl and k will give addi-
tional equations for theMj

(0) , which might improve the es
timates, but we shall use here only Eqs.~15! and ~17!.
f

ut

Exploiting now general bounds on moments of the no
negative densityf 0(u) derived in the Appendix, we obtain
two-sided bounds forM3

(0) ,M4
(0) ,M5

(0) , which determine,
by Eq. ~14!, the electron driftw and mean energyW.

Inequalities

The upper bounds onMj , j53,4,5~we have dropped the
superscript zero!, can be calculated from Eq.~15! using Eq.
~A5!:

M4<M6
1/2⇒1>

e

E2 ~M4
225TM4!

⇒M4
225TM42

E2

e
<0.

By solving the last inequality one gets

M4<a, a5
5T

2
1AE2

e
1S 5T2 D 2. ~18!

The same technique using bounds

M3<~M6!
1/4, M5<~M6!

3/4

gives

M3<a1/2, M5<a3/2, M6<a2,
M6

M4
>a. ~19!

The derivation of lower bounds via Eqs.~15! and ~17! is
more intricate. Keeping in mind thate is small, we use Eq.
~17! in the form of an inequality

2E2

e
~112e!.

M9

M5
28T

M7

M5
>AM9

M5
SAM9

M5
28TD ,

where we have usedM7<AM5M9 in virtue of Eq. ~A5!.
Using now Eq.~A6! with j55, n51, ands54 we obtain

M9

M5
>SM6

M5
D 4

and a quadratic inequality forM6 /M5 whose solution is

M6

M5
<b1/2, b54T1A~4T!21

2E2~112e!

e
. ~20!

We repeat now in Eq.~20! the use of Eq.~A6! with i56,
k51, s52 andi56, k52, s5 3

2 with the results

M6

M4
<b,

M6

M3
<b3/2. ~21!

One can solve Eq.~15! forM6 in terms ofM4 and using
Eq. ~21! obtain the inequality

M45
M4

M6
M65

M4

M6
SE2

e
15TM4D>b21SE2

e
15TM4D .

Its solution is
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56 1015BOUNDS ON THE MOBILITY OF ELECTRONS IN . . .
M4>
E2

e~b25T!
. ~22!

Similarly expressingM5 andM3 throughM5 /M6 and
M3 /M6 , respectively, and using Eqs.~15! and ~20!–~22!
we find the lower bounds. Together with Eq.~19! they allow
us to write down two-sided bounds forMj ( j53,4,5) in the
form

aj /221>Mj>bj /222
E2

e~b25T!
. ~23!

These are sufficient, by Eq.~14!, for the estimation ofw and
W. One can write immediately

ma

2g2>W>
mE2

2g2e~b25T!
. ~24a!

Using the definition~14! and the inequality~A5! we obtain

e

Eg
M5>w>

e

Eg
M5

1/3~M5
2/324T!, ~24b!

which can be combined with Eq.~23! for j55 to get explicit
bounds onw.

The lower bounds in Eq.~23! are useless whenE→0 and
the solution of Eq.~2! approaches the Maxwellian. Gene
ally, the inequalities~23! become more useful the largerE is.

IV. COMPARISON WITH THE DRUYVESTEYN
APPROXIMATION

When the background temperatureT is small compared
with Ee21/2 it can be neglected in Eqs.~18! and~20! and the
bounds~24! look simpler:

e1/4AE
g

>w>
e1/4AE

g@2~112e!#1/4
,

~25!

mE

2g2Ae
>W>

mE

2g2A2e~112e!
.

These bounds specify the electron drift and mean energ
functions of the electric field and gas parameters within
rors of about620% for the mean energy and68% for the
drift uniformly in E and e. For comparisonw andW ob-
tained from the Druyvesteyn distribution~10a! are

w'0.897
e1/4E1/2

g
, W'0.854

mE

2g2Ae
, ~26!

in good agreement with Eq.~25! whene!1.
Experimentalists also measure sometimes the transv

Dt and longitudinalDL diffusion constants for the electro
swarm. WhileDL cannot generally be expressed@2,9# in
terms of the velocity moments,

Dt5D5
l̄

3g
M3
as
r-

sal

is just the isotropic diffusion constant, wherel̄ is the mean
free path of electrons~l̄5l here!. WhenT can be neglected
we obtain

l

3g FE2

e G1/4>D>@2~112e!#23/4
l

3g FE2

e G1/4. ~27!

For comparison

D'0.759
l

3g SE2

e D 1/4
in the Druyvesteyn approximation.

V. MOBILITY IN BINARY MIXTURES

The increase of electron mobilityw/F in a plasma upon
the addition of a small amount of a new gas has been
served in@3#. It was calculated in@4# within the two-term
approximation~8! and ~9! for binary mixtures of a heavy
noble Ramsauer gas and helium addition. We shall sh
here rigorously that this effect exists even with constant c
lision cross sections. Using Eq.~11! gives

w52
1

3g
M3

~1! ~28!

and for l51 Eq. ~13! reads

Mk11
~1! 5ES 2kMk21

~0! 12
32k

5
Mk21

~2! D . ~29!

WhenE→0 we may neglect the second term in Eq.~29! and
obtain

w'
2E

3g
M1

~0!'
4E

3gA2pT
5
2

3
A2

p

eFl

AmkTn
, ~30!

using Eq. ~4! and the initial notation. The resistivity
F/enw is here proportional to(Nis i , which is just Mat-
thiessen’s rule.

Let us consider now the case of a strong fieldkT0
!eFl/Ae for a binary mixturei51,2 and use the two-term
ansatz~8! and ~9!. We then have the Druyvesteyn distribu
tion ~10! with the moments~26!. Using Eq. ~14! and the
notation

a5
N2

N11N2
, m5

M1

M2
, u5

s2

s1
.

we can write explicit expressions for the drift and mean el
tron energy

w50.897A eF

~N11N2!s1AmM1

~12a1aum!1/4

~12a1au!3/4
,

~31!

W50.427
eF

~N11N2!
AM1

m
@~12a1au!

3~12a1aum!#21/4. ~32!
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1016 56A. ROKHLENKO AND JOEL L. LEBOWITZ
Both the current and energy of electrons increase, but
mobility w/F decreases, as the fieldF increases.

Let us now keep the total gas densityN11N2 constant
and vary the relative concentration of components by cha
ing a. A simple analysis of Eq.~31! shows thatw can be
nonmonotonic when bothu and m are larger than 1. Fo
example, ifu55,m520, then consideringw as a function of
a, w5w(a), we have

w~am!

w~0!
'1.41,

w~1!

w~0!
'0.95.

Herew(am) is the maximum value ofw obtained foram
'0.11. The drift speed is almost the same in the pure spe
1 and 2, but it is noticeably larger in a mixture. The me
energy of electrons changes more. When the lighter com
nent substitutes for the heavier one it goes down:

W~am!

W~0!
'0.46,

W~1!

W~0!
'0.21.

There is even a more striking situation, when one j
adds the lighter gas keeping the densityN1 of the heavier
component constant. In this case

w~d!;
~11dum!1/4

~11du!3/4
,

W~d!;~11d!21/2~11du!21/4~11dum!21/4, ~33!

whered5N2 /N1 . Increasingd, we increase the density o
scatterers, but ford5dm58.5%

w~dm!

w~0!
'1.4,

while the electron energy decreases:W(dm)'0.5W(0).
We obtained these results approximately, by truncat

the series~5!. However, comparing Eq.~26! with the bounds
~24!, we see that the drift velocity and mean energy for
Druyvesteyn approximation cannot differ from the exact
lution by more than about112%, 26%, and617%, re-
spectively. Hence the nonmonotonic dependence of the e
tron mobility on the density of the light species holds for t
exact solution of the kinetic equation~2!. When we had
wmax'1.40w(0) ~within the approximation! a possible exag-
geration ofwmax by 12% and underestimation ofw(0) of at
most 6% could reduce their ratio from 1.40 to 1.16, but
effect is clearly there without approximations.

The explanation of such unusual behavior of the elect
drift in the nonlinear regime is quite simple. WhenM2
,M1 the addition of species 2 makes the energy tran
from the electrons to atoms easier in the elastic collisio
Consequently, the mean electron energyW will drop leading
to a net increase of the mean free timet(v);l/v. The
competition ofl andv is shown by formulas~31! and~33!,
wherea,d represent the concentration of the lighter spec
andm is proportional to its relative effectiveness in the e
ergy transfer. Adding about 10% of a component with ato
of massm2;0.05m1 , the mean electron energy decreases
about 12, implying the increase ofw by about 40%. This rise
of the electron mobility can be stronger@4# in the case when
e

g-

es

o-

t

g
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c-

e
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r
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s
-
s
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the collision cross section of the main~heavy! component is
energy dependent and decreases with the electron energ

VI. SIMPLE VELOCITY-DEPENDENT COLLISION
CROSS SECTIONS

We consider here a one-species plasma with the atom
massM and generalize the bounds~24! for thee-n collision
cross section of the form

s~v !5s0S vv0D
p

, ~34!

where the exponentp can be positive or negative in a certa
range. Setting

v0
25

eF

mNs0
, t5e1/2

kTn
mv0

2 , e5
m

M
,

we can rewrite Eq.~1! as

2e~p12!/4
] f

]yz
5e

1

y2
d

dy Fyp14S f 01 t

y

d f0
dy D G

1yp11~ f 02 f !, ~35!

where v5e21/4v0y and we have in mind situations wit
‘‘strong’’ electric field t!1. Using the Legendre series ex
pansion ~5! for f (y), we again obtain the infinite set o
coupled equations for harmonicsf l(y),

e2~p12!/4y11pf l5
l

2l11 S d fl21

dy
2
l21

y
f l21D

1
l11

2l13 S d fl11

dy
1
l12

y
f l11D ~36!

for l51,2,3,... and onemore equation

f 1523e~22p!/4yp12S f 01 t

y

d f0
dy D , ~37!

corresponding to Eq.~8!.
Methods similar to those in Sec. II allow us to derive t

pair of equations for moments, which generalize Eqs.~16!
and ~17!:

M~2p16!5ep/2M~2!, M~3p19!5ep/2cM~p15!,
~38!

where

c5 1
3 @p1614e~p13!#, M~k!5E

0

`

f 0~y!ykdy,

and the background temperature parametert is neglected for
simplicity. In terms of these moments, which clearly satis
Eq. ~A2!, we have for the electron drift and mean energy

w5e~12p!/4v0M~p15!, W5e21/2
mv0

2

2
M~4!.

~39!
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56 1017BOUNDS ON THE MOBILITY OF ELECTRONS IN . . .
A calculation similar to that described in Sec. II and t
Appendix shows that Eqs.~38! and ~39! yield the following
upper (U) and lower (L) bounds forw andW:

wL<w<wU , WL<W<WU ,

wL5v0S e

cD ~p11!/~2p14!

, wU5v0e
~p11!/~2p14!,

~40!

WL5
mv0

2

2
e21/~p12!c2~p11!/~p12!, WU5

mv0
2

2
e21/~p12!,

which give Eq.~24! for the velocity independent cross se
tion p50 whenT!e21/2E.

We can find the approximate solution of Eq.~35!

f 0
D~y!5C expF23E

0

y x2p13dx

ep/213tx212pG , ~41!

FIG. 1. Bounds of the~a! electron drift and~b! mean energy as
functions of the exponentp in Eq. ~34!.
using the two-term ansatz that leads to the Druyvesteyn fu
tion ~9c! for p50. Computing the moments in Eq.~39! with
the help of Eq.~41! yields the explicit formulas

wD5e~p11!/~2p14!v0F2p14

3 G ~p13!/~2p14!

3GS p16

2p14D Y GS 3

2p14D ,

WD5e21/~p12!
mv0

2

2 F2p14

3 G1/~p12!

3GS 5

2p14D Y GS 3

2p14D . ~42!

The bounds in Eq.~40! for the drift and energy as func
tions of the parameterp are shown in Fig. 1 in the form
wB /wD21,WB /WD21, respectively, with the Druyvestey
result ~42! for comparison~we use the subscript ‘‘B’’ for
both ‘‘L ’’ and ‘‘ U ’’ !. The accuracy of two-term approxima
tion for our models is quite good.
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APPENDIX

The momentsMk involved in Eqs.~15! and~17!–~24! are
the integrals of the non-negative functionf 0(u):

f 0~u!5 1
2 E

0

p

f ~u!sin u du.

We can easily show that lnM(k) is a concave function if one
treatsk as a continuous variable:

d2

dk2
lnM>0. ~A1!

Equation~A1! is equivalent to the inequality

M
d2M
dk2

>S dMdk D 2, ~A2!

which can be written using Eq.~12! as

E
0

`

xkf 0~x!dxE
0

`

yk ln2~y! f 0~y!dy2S E
0

`

xk ln x f0~x!dxD 2
5 1

2 E
0

`E
0

`

xkyk ln2S xyD f 0~x! f 0~y!dx dy>0.

The concavity implies obviously
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lnMk2 lnMi

k2 i
<
lnMn2 lnMm

n2m
,

~A3!

k. i>0, n.m> i , n>k.

Taking k2 i5n2m, n2k5 j we obtain

Mk

Mi
<
Mk1 j

Mi1 j
, k. i , j.0. ~A4!
s

For the casek5m Eq. ~A3! yields the inequality

~Mk!
j2 i<~Mi !

j2k~Mj !
k2 i , 0< i,k, j , ~A5!

which is equivalent to the useful set

SMj1n

Mj
D s<Mj1sn

Mj
, S Mi

Mi2k
D s> Mi

Mi2sk
, ~A6!

wherei , j ,n,k>0, s>1, andi>sk.
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