PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Bounds on the mobility of electrons in weakly ionized plasmas
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We obtain exact upper and lower bounds on the steady-state drift velocity, and kinetic energy of electrons,
driven by an external field in a weakly ionized plasftaaarm approximation The scattering is assumed to be
elastic with a simplified velocity dependence of the collision cross sections. When the field is large the bounds
are close to each other and to the results obtained from the conventional approximation of the Boltzmann
equation in which one keeps only the first two terms of a Legendre expansion. The bounds prove rigorously
that it is possible to increase the electron mobility by the addition of suitably chosen scatterers to the system
as predicted by the Druyvesteyn approximation and found in experinj&i863-651X97)07807-0

PACS numbg(s): 52.25.Fi, 05.60tw, 52.20.Fs, 02.30.Mv

[. INTRODUCTION tions satisfy certain conditions. We believe that our analysis
can be extended to include more realistic elastic cross sec-
The behavior of the electron mobility in a gas composedions and inelastic collisions; these are most important in
of several species is a subject of continued experimental an@ractice for enhancement of the electron mobility.
theoretical investigationgl—4]. Of particular interest is the
fact that theaddition of certain types of scatterers, i.e., neu- Il. KINETIC EQUATION
tral species, to the gas increases the electron mobility and ) o )
therefore the electron current in an applied electric field Our starting point is the commonly used swarm approxi-
[3,4]. This effect is potentially of practical utility and, as was Mation, applicable to gases with a very small degree of ion-
pointed out by Nagpal and Garscaddd, can be used to |zat|on.[6—10]. In th|§ approximation onlp-n collisions are
obtain information about scattering cross sections and levdfken into account in the kinetic equation for the electron
structure of different species. distribution function (EDF) f(r,v,t). The neutral atoms
The fact that the mobility can actually increase with thethemselves, which may consist of several species, are as-
addition of scatterers is at first surprising: It is contrary to theSumed to have a Maxwellian distribution with a specified
well-known Matthiessen rule in metals, which states that th&ommon temperaturé, . Further simplification is achieved
total resistivity due to different types of scatterers is the sunif the e-n collisions are assumed to be essentially elastic: the
of resistivities due to each of thefB]. A closer inspection collision integral can then be reducgti] to a differential
shows that Matthiessen’s rule refers to the linear regime ofperator due to the great difference in the masses of the
small electric fields, while the observations and analysis irflectrons and neutrals. To simplify matters further we con-
gaseqd3,4] are in the nonlinear high-field regime. sider the case where the scattering is spherically symmetric.
This still leaves open the question of the Va||d|ty of ap- The Stationary kinetic equation for the normalized EDF, ina
proximations commonly made in calculating the current ofspatially uniform system with constant densitysubject to
weakly ionized plasmas in strong fields. We therefore invesan external electric fieldr, can then be written in the form
tigate here rigorously the stationary solutions of the kinetid 6]
equation for the electron velocity distribution function in
cases where the electron—neutral-atoean collisions are € 19
purely elastic and their cross section is modeled by a simple m VYT 020
power dependence on the electron speed. In particular we
establish two-sided bounds for the electron mean energy and v
drift in the presence of an external electric field. These \Nv)
bounds show that the results obtained for the current and @)
energy of the electrons in the usual approximation, which S -1 s
. . . NiO'i(U)
neglects higher-order terms in a Legendre polynomial expan- )\(v)={z Nioi(v)| e(v)=)\(v)m2 L
sion and gives the Druyvesteyn-like distribution for large =1 =1 M
fields, are qualitatively right and even provide good quanti-
tative answers. In fact, they are sufficiently precise to conHeree,m are the electron charge and mass,is the colli-
firm an increase in the current for largleut not for small ~ sion cross section with speciesvhose mass iM; and num-
fields upon addition of some gases, provided the mass of tHeer density isN;, A is the mean free path in then colli-
added species is smaller than that of the dominant one, e.gions, k is Boltzmann’'s constant, anfl, is the spherically
adding helium to a xenon gas, and the different cross secsymmetric part of the distribution function,

mv Jdv

U4 an &fo
NYZ2%Y 0
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1 where 0 is the angle betweem and the fieldF: cos?
fo(v)= 7~ f f(v)dQ. =u,/u. Substituting Eq(5) into Eq.(2) we obtain an infi-
nite set of coupled ordinary differential equations fer0,

We note thate is a small parameter equal to the ratio of theuzo' These have the form
T df
u“( fot O)

electron mass to the mean mass of neutral scatterers E (dfl 2 ) 1 d
11T €240

=mM~1, whereM *=3M; *N;0;/EN;0;.

~3lduu ucdu udu/|
(6)
A. Velocity-independent cross sections q
an
We shall consider first the case whergv) is indepen-
dent ofv so\ =const ande= const. Taking the electric field [ dfi_, I-1 |+1 [dfj.,
parallel to thez axis, Eq.(1) can be written in the dimen- E -1 ( du _ u 11 + 21+3 |\ du_
sionless form
of 19 of +|+2f f 1=1,2 @
e =u = e
_ _ - 4 4 — _O + _ u I1+1 | s 14y
gu, € uZau ul fo au u(fo=f),
Equation(6) can be integrated to give
where
= — — u —_—— s
u=9v, U= Juitugtus, 1 E " u du

where the arbitrary constant of integration was taken to be 0,
_/m Tn E ex|F| using reasonable assumptions on the behavidr adu—0
Y= NkTy T’ KT, andu— .
In the conventiona[8—10] approximation scheme only

with some fixedT, specifying the units of the temperature. tWo terms of expansiort5) are kept. This is equivalent to

We normalizef so that assumingf,(v)=0 for [=2. One then adds to E@8) one
more differential equation, obtained from E{), for | =1,
1 o0
= 3= 2 - df
yp= f f(u)d°u fo ufodu=1. 3 Ed—0=Uf1- (93)
u
WhenE=0 the stationary distribution is the Maxwellian Substituting Eq(8) into Eq. (9) then yields an equation for
with temperatureT, fo,
3eT dfy 3e
| 2 —u? (1+ uz) —24 55 U3=0 (9b)
= = = [ _ =2 =2 0 ’
f=fo=M(u) 3 exp{ >T ) (4) E du E

whose solution is
M (u) is the unique solution of Eq2) for E=0, e# 0. When

E+0 the situation is more complicated. Only f&r small u o x3dx
compared tce can we expect the stationary EDF to be close fo=C exp - o TX°+EZ2/3e)
to M(u). But in the physically interesting regimes itéghat

is small compared te. On the other hand, iE=0 the Tp;g f, becomes the MaxwelliaM (u) [Eq. (4)] when E

collisions almost do not change the electron energy, so it is-g gnd the Druyvesteyft 1] distribution f® whenT=0:
difficult for the electrons to get rid of the energy they acquire

from the field. The limite—0 is therefore singular. In par- 3eu?
ticular, there is no well-defined reference stationary state for fo=fP=C expg - F)

(90

e=0 about which to expand the solution of HE). (103
3e 3/4 3
B. Legendre expansion C=v2 ET) / F(z)
The usual method8] of solving Eq. (2) is to expand . _ .
f(u) in terms of the Legendre polynomialiy , whereI is the Gamma function. Using Eq&) and (109
one can findfq,
f(u)=2> f(u)P(cos), 3eu? 3eu’

For T>0, fy in Eq. (90 will always have a Maxwellian

21+1
fiu)=—7— f f(u)P(cos 6)dQ,, form for u>(E*/Te)Y2
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The first two harmonics are sufficient to find the mean

energy per particl&®V and mean speedirift) w of the elec-
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Exploiting now general bounds on moments of the non-
negative densityf,(u) derived in the Appendix, we obtain

trons, which are physically the most important properties otwo-sided bounds forMQ, M, M), which determine,

the stationary state,

W=ﬂjv2f(v)d3v= m fxu“f du
8w ﬁ 0 o=

—— f fd3—_1fx 3,d
_F’}/Z u, U—g OLI 1au.

11

We shall now study the properties of these moments without

the approximations made for explicitly solving E®).

. MOMENTS OF THE DISTRIBUTION FUNCTION

We assume that moments

M(k”:f:ukfl(u)du (12)

exist at least for &k=<09. Multiplying Eq. (7) by a positive
powerk of u and integrating oveu yields the equation

l+k=1
21-1 k=1

(1+1)(1+2—K)

Shal 21+3

M+D
=M. (13)

In terms of these moments and W can be written, using
Egs.(11) and(8), as

€ m
w=g [MO—-4TMP], W= 2,7 MY . (14
We will now construct estimates af and W by using
Egs.(8) and(13) to get relations between thé(” . (i) Tak-
ingl=1 andk=3 in Eq.(13) and substituting E¢8) for the

calculation of M{M gives
MP=1=

MO —5TMP). (15)

€
g2 (
(i) Forl=1, k=6, Eqs.(13) and(8) yield

1 €
MO+ 2 MP =55 (MP-8TMP).  (16)

(i) The setl =2, k=4 allows us to find\?,

MP = — = EM=10e(MP - 4TMY)

and eliminate it from Eq(16) to obtain

(1+2e) MDY 8TMY).

7

Further calculation using differerit and k will give addi-
tional equations for thevt{”), which might improve the es-
timates, but we shall use here only E¢ES) and (17).

€
— 8TEM(30) :ﬁ (./\/lgo) —

by Eg. (14), the electron drifv and mean energy.

Inequalities

The upper bounds oM, j=3,4,5(we have dropped the
superscript zeng can be calculated from E@15) using Eq.
(A5):

€
M=MiP=1= =2 (M3—5TM,)

EZ

= M2-5TM,— —=0.

By solving the last inequality one gets

My=<a, a=i+ E—2+(E)2 (18
2 € 2
The same technique using bounds
Ma=(Mg)", Ms=<(Mqg)¥*
gives
Ms=<a'? Mg=a®? Mg=a? %Ba. (19

My

The derivation of lower bounds via Eg45) and(17) is
more intricate. Keeping in mind thatis small, we use Eq.

(17) in the form of an inequality
Mo [ [Mg )
Ms ( Vg ®T)

where we have used;<MsM, in virtue of Eq.(A5).

Using now Eq.(A6) with j=5, n=1, ands=4 we obtain
welw
_2 —
My \ Ms

2E° 1120 gr M
c (It2e=7 M~

and a quadratic inequality fokg/Ms whose solution is

2E2(1+2¢)

M
—C<p? b= 4T+\/(4T)2 " (20

5

We repeat now in Eq(20) the use of Eq(A6) with i=6,

k=1,s=2 andi=6, k=2, s=2 with the results
Mg Mg 3/
—=< —< . 21
My b, Ms b @)

One can solve Eq15) for Mg in terms of M, and using
Eqg. (21) obtain the inequality

M, E? E2
My= ./\/l MG—/WG —+5T./\/l4 =p?! ?+5TM4 .
Its solution is



E2

M= epsT)

(22

Similarly expressingMs and M; through Mg/ Mg and
Mzl Mg, respectively, and using Eq€l5) and (20)—(22)
we find the lower bounds. Together with Eq9) they allow
us to write down two-sided bounds favt; (j=3,4,5) in the
form

2

i2-1= \f =pil2-2
AT EMENT T T

(23

These are sufficient, by E¢L4), for the estimation ofv and
W. One can write immediately

ma W mE? 04
=W
2y 2vy°e(b—5T) (243

Using the definition(14) and the inequalitfA5) we obtain

€ €
g, Ms=w= g M MEP-4T), (24b)
which can be combined with E3) for j =5 to get explicit
bounds orw.
The lower bounds in Eq23) are useless wheB—0 and
the solution of Eq.2) approaches the Maxwellian. Gener-
ally, the inequalitie$23) become more useful the largérs.

IV. COMPARISON WITH THE DRUYVESTEYN
APPROXIMATION

When the background temperatufeis small compared
with Ee~ 2 it can be neglected in Eq&l8) and(20) and the
bounds(24) look simpler:

1/4 1/4
€ \/Ezwz—,—e VE T»
Y Y[2(1+2¢)] 25
mE mE
=W= .
2y%\e 2y2\2e(1+2¢)

These bounds specify the electron drift and mean energy

rors of about+20% for the mean energy and8% for the
drift uniformly in E and e. For comparisorw and W ob-
tained from the Druyvesteyn distributiqgiOg are

LA L2
w=~=0.897 ,
Y

mE
W=~0.854—— (26)

2y%\e’

in good agreement with E¢25) whene<1.

Experimentalists also measure sometimes the transversal

D, and longitudinalD, diffusion constants for the electron
swarm. WhileD, cannot generally be expressg#,9] in
terms of the velocity moments,

A
Dt:D:3_yM3
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is just the isotropic diffusion constant, whexds the mean
free path of electroné\=\ here. WhenT can be neglected
we obtain

2 1/4

€

1/4 E2

€

A

3y (27)

A
>D>[2(1+2e)]*3’437

Y E2 1/4
<

For comparison

D~O.759§/

in the Druyvesteyn approximation.

V. MOBILITY IN BINARY MIXTURES

The increase of electron mobility/F in a plasma upon
the addition of a small amount of a new gas has been ob-
served in[3]. It was calculated if4] within the two-term
approximation(8) and (9) for binary mixtures of a heavy
noble Ramsauer gas and helium addition. We shall show
here rigorously that this effect exists even with constant col-
lision cross sections. Using E(L1) gives

1 (1)
and forl=1 Eq.(13) reads
(1) (0) 3—k (2)
Mk+1=E _kMk—l+2T Mk—l . (29)

WhenE— 0 we may neglect the second term in E2P) and
obtain

2B o__4E _2 \F e 4
W~ — ~ —— = — —_—,
3y Y 3yy2aT 3 V7 mkT,

using Eg. (4 and the initial notation. The resistivity
F/enw is here proportional t&N;o;, which is just Mat-
thiessen’s rule.

Let us consider now the case of a strong fidddl,
<eFM/ e for a binary mixturei =1,2 and use the two-term
ansatz(8) and(9). We then have the Druyvesteyn distribu-

functions of the electric field and gas parameters within eﬁﬁ)n (10) with the moments(26). Using Eq.(14) and the

notation

N2

M,
TN +N,’ M,

_Mz’

02

o = —.
g1

we can write explicit expressions for the drift and mean elec-
tron energy

eF (1—a+abu)?
w=0.897 34 1
(Ni+Np)opymM, (1-a+ad)
(31
W=0427—oF \/Ml 1—a+ab
R I NFERN m [(A-atab)
X(1—a+afu)] Y (32
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Both the current and energy of electrons increase, but ththe collision cross section of the maineavy component is

mobility w/F decreases, as the fieldincreases. energy dependent and decreases with the electron energy.
Let us now keep the total gas densNy + N, constant

and vary the relative concentration of components by chang- v|. SIMPLE VELOCITY-DEPENDENT COLLISION

ing a. A simple analysis of Eq(31) shows thatw can be CROSS SECTIONS
nonmonotonic when bott® and x are larger than 1. For i . .
example, ifd=5, = 20, then considering as a function of We consider here a one-species plasma with the atoms of
a, W=w(e), we have massM and generalize the boun@24) for the e-n collision
cross section of the form
Wlam) ) 41, P o 95, b P
w(0) w(0) O'(U):O'o( U—) , (34
0

Here w(«,,) is the maximum value oW obtained fora,,

~0.11. The drift speed is almost the same in the pure specigghere the exponent can be positive or negative in a certain
1 and 2, but it is noticeably larger in a mixture. The meanrange. Setting

energy of electrons changes more. When the lighter compo-

nent substitutes for the heavier one it goes down: 2_ eF _ 12 KT, _m
Vo= , t=€e""——, €=,
mNO'O mUO M
Wlaw) o 46, MU 521
W(0) TR W(o)N e we can rewrite Eq(1) as
There is even a more striking situation, when one just (p+2)/4 of 1d p+a t dfy
adds the lighter gas keeping the dendity of the heavier € ay, CyZdy y fot y dy
component constant. In this case
+yPHi(fo—1), (35)
(1+86u)Y*
w(8)~ (1+066)7% where v=¢ Yy and we have in mind situations with

“strong” electric field t<1. Using the Legendre series ex-

W(8)~(1+8) Y41+ 66) Y41+ 66w) Y4 (33  pansion(5) for f(y), we again obtain the infinite set of
coupled equations for harmoni€gy),

dfiy 1-1 )
- 1-1

where §=N,/N;. Increasings, we increase the density of

scatterers, but fo6= 5,,=8.5% (P2l pg |

W) 21+1\ dy y
m.
~14
W(O) ! I+1 df|+1 |+2
+2|+3 dy + y f|+1 (36)

while the electron energy decrease®V(5,,)~0.5W(0).
We obtained these results approximately, by truncatingor |=1,2,3... and onemore equation
the serie45). However, comparing Eq26) with the bounds
(24), we see that the drift velocity and mean energy for the (2— )l p+2 t dfy
Druyvesteyn approximation cannot differ from the exact so- fi=—3e Yy fot )_, W ' (37)
lution by more than about-12%, —6%, and+17%, re-
spectively. Hence the nonmonotonic dependence of the elegorresponding to Eq8).
tron mobility on the density of the light species holds for the  Methods similar to those in Sec. Il allow us to derive the
exact solution of the kinetic equatiof2). When we had pair of equations for moments, which generalize EG$)
Wnax=1.40n7(0) (within the approximationa possible exag- and(17):
geration ofw,,, by 12% and underestimation of(0) of at
most 6% could reduce their ratio from 1.40 to 1.16, but the M(2p+6)=€P?M(2), M(3p+9)=€P?cM(p+5),
effect is clearly there without approximations. (39
The explanation of such unusual behavior of the electron
drift in the nonlinear regime is quite simple. Whew,  Where
<M, the addition of species 2 makes the energy transfer "
from the electrons to atoms easier in thg elastic colllisions. c=1i[p+6+4e(p+3)], M(k):f foly)ykdy,
Consequently, the mean electron enevgwill drop leading 0
to a net increase of the mean free tim@)~\/v. The
competition of\ andv is shown by formulag31) and(33), and the background temperature parameismeglected for
where o, represent the concentration of the lighter speciesimplicity. In terms of these moments, which clearly satisfy
and u is proportional to its relative effectiveness in the en-Ed. (A2), we have for the electron drift and mean energy
ergy transfer. Adding about 10% of a component with atoms 2
of massm,~0.05m,, the mean electron energy decreases by _ (1-p)4 _ 120
about$, implying the increase ofv by about 40%. This rise w=e P M(p+5), W=e 7 M@
of the electron mobility can be stronge}] in the case when (39
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031 using the two-term ansatz that leads to the Druyvesteyn func-
wiw -1 tion (9¢) for p=0. Computing the moments in E@9) with
the help of Eq.(41) yields the explicit formulas
0.21
(p+3)/(2p+4)
-1
0 0.5 0 0.5 1 “r p+6 . 3
r 2p+4 2p+4)’
0.1 1
2 Up+2)
Wo— e~ Up+2) M0 | 2P+4
02 = 2 3
(a)
03 xT 2p+4 r 2p+4)° (42)
T W WL
The bounds in Eq(40) for the drift and energy as func-
0.2 tions of the parametep are shown in Fig. 1 in the form
wg/wp—1, Wg/Wp— 1, respectively, with the Druyvesteyn
o1 ] result (42) for comparison(we use the subscriptB” for
' both “L” and “U"). The accuracy of two-term approxima-
A 05 : 0 05 1 tion for our models is quite good.
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APPENDIX
-0.3 The moments\, involved in Eqs(15) and(17)—(24) are
) the integrals of the non-negative functibg(u):
FIG. 1. Bounds of théa) electron drift andb) mean energy as |7 .
functions of the exponerg in Eq. (34). fo(u)=>2 Jo f(u)sin 6 do.

A calculation similar to that described in Sec. Il and thewe can easily show thatvt(k) is a concave function if one
Appendix shows that Eq$38) and (39) yield the following  treatsk as a continuous variable:
upper U) and lower () bounds forw andW:

d2
weswsw,, W sW=sW,, a2 InM=0. (A1)

Equation(Al) is equivalent to the inequality

€\ (P+1)/(2p+4)
WLZUO(_) L Wy=pgelPtLI2pra)
c
(40) d?M _[dM)? A2)
dk’ ~ | dk |’
mv2 mv2
=2 e WP (prLI(pT2) =0 ¢~ UPHD), which can be written using Eq12) as

which give Eq.(24) for the velocity independent cross sec- f
tion p=0 whenT<e YZE.

oo oo o0 2
xkfo(x)dxf yK In2(y)f0(y)dy—( f xK In xfo(x)dx)
0
We can find the approximate solution of E§5)

0 0

[T k2l X
5 X“y*In fo(X)fo(y)dx dy=0.
y  x2PT3dx 0 Y

D _
fo(y)=C ex;{—S o rvesz il (41)

The concavity implies obviously
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INnMg—InM;  InM,—InM,, For the cas&k=m Eq. (A3) yields the inequality
k—i = n—m ' o ) )
(A3) (MY TIS(M)ITHMpRTT, o<i<k<j, (AB)
k>i=0, n>m=i, n=k. which is equivalent to the useful set
Takingk—i=n—m, n—k=j we obtain
M'+n s M‘+sn Mi s Mi
TR S a a > . (A6)
My Mk+j K>i =0 (A4) Mi Mj Mk Mi s
—_—<— i, .
M My J wherei,j,n,k=0, s=1, andi=sk.
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